In silico study of potential anti-inflammatory and gastroprotective markers of Jacaranda decurrens species

Autores/as

  • Mauro Meira de Mesquita Júnior Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Morgana Navarro Rosa Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Antônio Leão Neto Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Marcela Rodrigues Abdallah Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Thiago Assis Venâncio Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Rosita Vieira de Oliveira Pontifícia Universidade Católica de Goiás (PUC Goiás)
  • Leonardo Luiz Borges Pontifícia Universidade Católica de Goiás (PUC Goiás), Universidade Estadual de Goiás (UEG)

DOI:

https://doi.org/10.36414/rbmc.v11i25.203

Palabras clave:

Bioactivity, Carobinha, Biological markers, Medicinal Plants, Bioatividade, Marcadores biológicos, Plantas medicinais

Resumen

Brazil boasts the most extraordinary biodiversity in the world, with six distinct biomes spanning its vast territory, including the Cerrado. The species Jacaranda decurrens, commonly known as “carobinha” or “caroba”, is used for the treatment of certain illnesses, including gastrointestinal problems and inflammatory conditions. This study is an in silico prediction of the bioactivity of plant-derived compounds. Initially, twenty-five molecules from this species were analyzed, and sixteen were selected based on the highest scores in the computational analyses. The pharmacodynamic characteristics of the structures were elucidated using the PASS prediction servers from the Way 2 Drug platform and Swiss Target Prediction, while the pharmacokinetic characteristics were assessed using SwissADME. Toxicity analysis was performed using the Pred-hERG tool for cardiotoxicity evaluation and ProTox-II, allowing the exclusion of molecules with some degree of toxicity. After these analyses, two structures were highlighted: the compounds quinic acid and kaempferol, which proved to be highly compatible molecular targets for our study, as well as being very safe in their toxicological prediction, presenting the highest LD50 values among the studied components and no toxicity found in the other analyses. Additionally, they were shown to be drug-like, characterized by possessing physicochemical properties that make them suitable for therapeutic use. Thus, the bioactive compounds found in the plant, especially Kaempferol and Quinic Acid, proved to be promising in preliminary studies regarding their therapeutic potential, standing out for their significant biological activities and low toxicity. Therefore, the findings of this study provide a solid basis for future investigations, both in vitro and in vivo , using isolated molecules from the studied phytotherapeutic to test and prove the anti-inflammatory and gastroprotective actions.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mauro Meira de Mesquita Júnior, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Morgana Navarro Rosa, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Antônio Leão Neto, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Marcela Rodrigues Abdallah, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Thiago Assis Venâncio, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Rosita Vieira de Oliveira, Pontifícia Universidade Católica de Goiás (PUC Goiás)

Graduação em Medicina. Pontifícia Universidade Católica de Goiás (PUC Goiás).

Leonardo Luiz Borges, Pontifícia Universidade Católica de Goiás (PUC Goiás), Universidade Estadual de Goiás (UEG)

Doutor em Ciências Farmacêuticas. Pontifícia Universidade Católica de Goiás (PUC Goiás), Universidade Estadual de Goiás (UEG).

Citas

Argenta SC et al. Plantas medicinais: cultura popular versus ciência. Vivências: Revista Eletrônica de Extensão da URI. 2011;7(12):51–60.

Costa EC. Identificação de compostos fenólicos e avaliação do potencial biológico de plantas do gênero Jacaranda (Bignoniaceae) [Dissertação]. Diamantina (MG): Universidade Federal dos Vales do Jequitinhonha e Mucuri; 2022.

Ministério da Saúde (BR). Política e Programa Nacional de Plantas Medicinais e Fitoterápicos. Brasília: Ministério da Saúde; 2016.

Maroni B et al. Plantas medicinais do Cerrado de Botucatu. 1ª ed. São Paulo: UNESP; 2016.

Serra MB et al. Chemical characterization and wound healing property of Jacaranda decurrens Cham. Evid Based Complement Alternat Med. 2020;2020:4749712.

Pinheiro RBS et al. In silico analysis of the pharmacokinetic and toxicological profile of Zinc II thioglycolate complex [Zn(ATG)2(OH2)2].

Hernandes LS. Farmacologia e fitoquímica de extratos e formulações de Jacaranda decurrens, Jacaranda caroba e Piper umbellatum [Tese]. São Paulo: Universidade de São Paulo; 2015.

Dirar IA et al. In silico pharmacokinetics and molecular docking of three leads isolated from Tarconanthus camphoratus. Int J Pharm Pharm Sci. 2016;8:71–7.

Jesus VM. Padronização de extrativos bioativos e identificação de compostos de Jacaranda decurrens Cham. [Dissertação]. São Luís (MA): Universidade Federal do Maranhão; 2016.

Menezes VM et al. Chemical study of Jacaranda decurrens leaves. Braz J Dev. 2021;7(3):22055–70.

Filimonov DA et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd. 2014;50(3):444–57.

Daina A et al. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–64.

SwissADME. A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.

Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019;144:19–50.

Rosa JG. Urubuquaquá, no Pinhém. Rio de Janeiro: José Olympio; 1976.

Ministério da Saúde (BR). Relação Nacional de Medicamentos Essenciais (Rename). Brasília: Ministério da Saúde; 2022.

Ministério da Saúde (BR). 15 anos do Programa Nacional de Plantas Medicinais e Fitoterápicos (PNPMF). Brasília: Ministério da Saúde; 2022.

Ministério da Saúde (BR). RENISUS: Relação Nacional de Plantas Medicinais de Interesse ao SUS. Brasília: Ministério da Saúde; 2021.

Carvalho CA et al. Atividade antioxidante de Jacaranda decurrens Cham., Bignoniaceae. Rev Bras Farmacogn. 2009;19(2b):592–8.

Santos JA et al. Anti-inflammatory effects and acute toxicity of hydroethanolic extract of Jacaranda decurrens roots in adult male rats. J Ethnopharmacol. 2012;144(3):802–5.

Antunes KA et al. Antiobesity effects of hydroethanolic extract of Jacaranda decurrens leaves. Evid Based Complement Alternat Med. 2016;2016:4353604.

Etienne R et al. Aspectos fisiopatológicos da inflamação e o planejamento de fármacos: uma visão geral atualizada. Rev Virtual Quím. 2021;13(1):167–91.

Ministério da Saúde (BR). Relação Nacional de Medicamentos Essenciais (Rename) 2022. Brasília: Ministério da Saúde; 2022.

Karami TK et al. Eyes on Lipinski’s Rule of Five: a new “rule of thumb” for physicochemical design space of ophthalmic drugs. J Ocul Pharmacol Ther. 2022 Jan-Feb;38(1):43–55.

Braga RC et al. Tuning HERG out: antitarget QSAR models for drug development. Curr Top Med Chem. 2014;14(11):1399–415.

Braga RC et al. Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol Inform. 2015;34(10):698–701.

Banerjee P et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63.

Banerjee P et al. Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem. 2018;6:143.

Drwal MN et al. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42(Web Server issue):W53–8.

Friedman AH. The LD50. JAMA. 1985;254(1):56.

Huang Z et al. Arjunolic acid from Rhodomyrtus tomentosa suppresses growth of non-small cell lung cancer via inducing autophagy and apoptosis. Pharmacol Res – Mod Chin Med. 2025 Apr;15:100616.

Zhou D et al. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed Pharmacother. 2020;126:110075.

Vargas GC et al. Estudo da atividade antioxidante dos compostos fenólicos na medicina preventiva: revisão de literatura. Visão Acadêmica. 2022;23(1):60.

Zhao Z et al. Ursolic acid: a systematic review and meta-analysis of its anti-inflammatory and antioxidant effects. Front Pharmacol. 2023;14:1256946.

Claus G et al. Estudos in silico e experimentais das propriedades “druglike” de complexos de Au(I) com base na regra dos 5 de Lipinski. In: Anais do XXIX Congresso de Iniciação Científica da Unicamp; 2021; Campinas (SP).

Zhu L et al. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol Res. 2019 Jun 21;27(6):629–34.

Publicado

2025-08-07

Cómo citar

Mesquita Júnior, M. M. de, Rosa, M. N., Leão Neto, A., Abdallah, M. R., Venâncio, T. A., Oliveira, R. V. de, & Borges, L. L. (2025). In silico study of potential anti-inflammatory and gastroprotective markers of Jacaranda decurrens species. REVISTA BRASILEIRA MILITAR DE CIÊNCIAS, 11(25). https://doi.org/10.36414/rbmc.v11i25.203

Número

Sección

Artigos